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Communicating with noise

Signal

Attenuate

Add noise

Boost

5 cycles

100 cycles

Consider sending an audio signal by amplitude modulation: the
desired speaker-cone position is the height of the signal. The figure
shows an encoding of a pure tone.

A classical problem with this type of communication channel is
attenuation: the amplitude of the signal decays over time. (The
details of this in a real system could be messy.) Assuming we could
regularly boost the signal, we would also amplify any noise that has
been added to the signal. After several cycles of attenuation, noise
addition and amplification, corruption can be severe.

A variety of analogue encodings are possible, but whatever is used, no
‘boosting’ process can ever return a corrupted signal exactly to its
original form. In digital communication the sent message comes from
a discrete set. If the message is corrupted we can ‘round’ to the
nearest discrete message. It is possible, but not guaranteed, we’ll
restore the message to exactly the one sent.

Digital communication

Encoding: amplitude modulation not only choice.
Can re-represent messages to improve signal-to-noise ratio

Digital encodings: signal takes on discrete values

Signal

Corrupted

Recovered

Communication channels

modem → phone line → modem

Galileo → radio waves → Earth

finger tips → nerves → brain

parent cell → daughter cells

computer memory → disk drive → computer memory

Analog

Econding by amplitude modulation
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Introduction to Information Theory

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point.

(Claude Shannon, 1948)

In the first half of this book we study how to measure information content; we
learn how to compress data; and we learn how to communicate perfectly over
imperfect communication channels.

We start by getting a feeling for this last problem.

1.1 How can we achieve perfect communication over an imperfect,
noisy communication channel?

Some examples of noisy communication channels are:

• an analogue telephone line, over which two modems communicate digital
modem

phone
line

modem! !

information;

• the radio communication link from Galileo, the Jupiter-orbiting space-
Galileo radio

waves Earth! !

craft, to earth;

parent
cell

daughter
cell

daughter
cell

""#
$$%

• reproducing cells, in which the daughter cells’ DNA contains information
from the parent cells;

computer
memory

disk
drive

computer
memory

! !

• a disk drive.

The last example shows that communication doesn’t have to involve informa-
tion going from one place to another. When we write a file on a disk drive,
we’ll read it off in the same location – but at a later time.

These channels are noisy. A telephone line suffers from cross-talk with
other lines; the hardware in the line distorts and adds noise to the transmitted
signal. The deep space network that listens to Galileo’s puny transmitter
receives background radiation from terrestrial and cosmic sources. DNA is
subject to mutations and damage. A disk drive, which writes a binary digit
(a one or zero, also known as a bit) by aligning a patch of magnetic material
in one of two orientations, may later fail to read out the stored binary digit:
the patch of material might spontaneously flip magnetization, or a glitch of
background noise might cause the reading circuit to report the wrong value
for the binary digit, or the writing head might not induce the magnetization
in the first place because of interference from neighbouring bits.

In all these cases, if we transmit data, e.g., a string of bits, over the channel,
there is some probability that the received message will not be identical to the

3
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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transmitted message. We would prefer to have a communication channel for
which this probability was zero – or so close to zero that for practical purposes
it is indistinguishable from zero.

Let’s consider a noisy disk drive that transmits each bit correctly with
probability (1−f) and incorrectly with probability f . This model communi-
cation channel is known as the binary symmetric channel (figure 1.4).
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0
y P (y =0 |x=0) = 1 − f ;

P (y =1 |x=0) = f ;
P (y =0 |x=1) = f ;
P (y =1 |x=1) = 1 − f.

Figure 1.4. The binary symmetric
channel. The transmitted symbol
is x and the received symbol y.
The noise level, the probability
that a bit is flipped, is f .
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0
Figure 1.5. A binary data
sequence of length 10 000
transmitted over a binary
symmetric channel with noise
level f = 0.1. [Dilbert image
Copyright c©1997 United Feature
Syndicate, Inc., used with
permission.]

As an example, let’s imagine that f = 0.1, that is, ten per cent of the bits are
flipped (figure 1.5). A useful disk drive would flip no bits at all in its entire
lifetime. If we expect to read and write a gigabyte per day for ten years, we
require a bit error probability of the order of 10−15, or smaller. There are two
approaches to this goal.

The physical solution

The physical solution is to improve the physical characteristics of the commu-
nication channel to reduce its error probability. We could improve our disk
drive by

1. using more reliable components in its circuitry;

2. evacuating the air from the disk enclosure so as to eliminate the turbu-
lence that perturbs the reading head from the track;

3. using a larger magnetic patch to represent each bit; or

4. using higher-power signals or cooling the circuitry in order to reduce
thermal noise.

These physical modifications typically increase the cost of the communication
channel.

The ‘system’ solution

Information theory and coding theory offer an alternative (and much more ex-
citing) approach: we accept the given noisy channel as it is and add communi-
cation systems to it so that we can detect and correct the errors introduced by
the channel. As shown in figure 1.6, we add an encoder before the channel and
a decoder after it. The encoder encodes the source message s into a transmit-
ted message t, adding redundancy to the original message in some way. The
channel adds noise to the transmitted message, yielding a received message r.
The decoder uses the known redundancy introduced by the encoding system
to infer both the original signal s and the added noise.
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Copyright c©1997 United Feature
Syndicate, Inc., used with
permission.]

As an example, let’s imagine that f = 0.1, that is, ten per cent of the bits are
flipped (figure 1.5). A useful disk drive would flip no bits at all in its entire
lifetime. If we expect to read and write a gigabyte per day for ten years, we
require a bit error probability of the order of 10−15, or smaller. There are two
approaches to this goal.

The physical solution

The physical solution is to improve the physical characteristics of the commu-
nication channel to reduce its error probability. We could improve our disk
drive by

1. using more reliable components in its circuitry;

2. evacuating the air from the disk enclosure so as to eliminate the turbu-
lence that perturbs the reading head from the track;

3. using a larger magnetic patch to represent each bit; or

4. using higher-power signals or cooling the circuitry in order to reduce
thermal noise.

These physical modifications typically increase the cost of the communication
channel.

The ‘system’ solution

Information theory and coding theory offer an alternative (and much more ex-
citing) approach: we accept the given noisy channel as it is and add communi-
cation systems to it so that we can detect and correct the errors introduced by
the channel. As shown in figure 1.6, we add an encoder before the channel and
a decoder after it. The encoder encodes the source message s into a transmit-
ted message t, adding redundancy to the original message in some way. The
channel adds noise to the transmitted message, yielding a received message r.
The decoder uses the known redundancy introduced by the encoding system
to infer both the original signal s and the added noise.

f = 0.1
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and write a gigabyte per day for ten years, we require a bit error probability of the 

order of 10−15, or smaller. 

! Physical solutions 

! Incremental improvements  

! Increasing costs

! System Solutions 

! Can turn noisy channels into reliable communication channels (with the only cost being 

a computational requirement at the encoder and decoder)
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).

Communicating with noise

Signal

Attenuate

Add noise

Boost

5 cycles

100 cycles

Consider sending an audio signal by amplitude modulation: the
desired speaker-cone position is the height of the signal. The figure
shows an encoding of a pure tone.

A classical problem with this type of communication channel is
attenuation: the amplitude of the signal decays over time. (The
details of this in a real system could be messy.) Assuming we could
regularly boost the signal, we would also amplify any noise that has
been added to the signal. After several cycles of attenuation, noise
addition and amplification, corruption can be severe.

A variety of analogue encodings are possible, but whatever is used, no
‘boosting’ process can ever return a corrupted signal exactly to its
original form. In digital communication the sent message comes from
a discrete set. If the message is corrupted we can ‘round’ to the
nearest discrete message. It is possible, but not guaranteed, we’ll
restore the message to exactly the one sent.

Digital communication

Encoding: amplitude modulation not only choice.
Can re-represent messages to improve signal-to-noise ratio

Digital encodings: signal takes on discrete values

Signal

Corrupted

Recovered

Communication channels

modem → phone line → modem

Galileo → radio waves → Earth

finger tips → nerves → brain

parent cell → daughter cells

computer memory → disk drive → computer memory
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for achieving reliable
communication over a noisy
channel. The encoding system
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into the transmitted vector t. The
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Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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! The role of the encoder is to introduce systematically redundancy to make 

possible to the decoder (which know the encoding process) to discover the sent 

message even if some bits were flipped by the noise channel. 

! Information Theory is concerned with the theoretical limitations and potentials of 

such systems. ‘What is the best error-correcting performance we could 

achieve?’  

! Coding Theory is concerned with the creation of practical encoding and 

decoding systems 
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Weekly routine

! Lectures - 1 x 2 h 

! The lab sessions - 1 x 2 h 

! Training problem solving 

! Project developing 

! The recommended readings 

! The recommended actions 

! Meetings for student support if required

18
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Evaluation rules

! The students performance evaluation includes two individual written tests and a small 

project. 

" Final Grade = 35% Test1 + 35% Test2 + 30% Project 

! To successful conclude the following constraints are applied:  

" Project >= 10; 

" Test1 >= 8; Test2 >= 8; 

" Average of Test1 and Test2 >= 10; 

" Final Grade >= 10. 

! The students that get a Project >= 10 and do satisfy the constraints on the tests, may have 

an exam which grade will replace the tests in the final grade calculation

19
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Important Dates

! Test 1: Week starting at November 9th 

! Test 2: Week starting at January 4th 

! Project Specification: Up to 13 November  

! Project delivery: Up to 19 December 

! Project Oral discussion: 21, 22 December

28
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).

The repetition code R3 

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 5

Noisy
channel

Encoder Decoder

Source

t

s

r

ŝ
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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! Transmit R3 messages over a Binary Symmetric Channel with f = 0.1 

! We can describe the channel as ‘adding’ a sparse noise vector n to the transmitted 

vector t  (adding in modulo 2 arithmetic): 

! A zero on n does not change the transmitted bit  

! A one on n does change the transmitted bit 

Transmit R3 messages over a BSC 
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for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
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received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).

r = t⊕ n

0→1; 1→ 0
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! Lets send a message with few bits 

! The transmitted message according to different noise vectors
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
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into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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Imagine that we transmit the source message
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over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
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number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.
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Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
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number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.
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Imagine that we transmit the source message
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over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
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of the game clear: we want to be able to detect and correct errors; and re-
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number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.
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Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.
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of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
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number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.
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Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
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We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
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Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
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Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.
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transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
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Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.
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Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.
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could achieve?’

Coding theory is concerned with the creation of practical encoding and
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We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
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Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.
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0 000
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Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.
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transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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could achieve?’

Coding theory is concerned with the creation of practical encoding and
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1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
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Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
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0 000
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Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.
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transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).



Course Overview - 

! The optimal algorithm looks at the received bits three at a time and takes a majority 

vote. 

! More 0, take a 0 

! More 1s, take a 1

How should we decode this received vector? 

36

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 5

Noisy
channel

Encoder Decoder

Source

t

s

r

ŝ
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1
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︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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6 1 — Introduction to Information Theory

Received sequence r Likelihood ratio P (r | s = 1)
P (r | s = 0) Decoded sequence ŝ

000 γ−3 0
001 γ−1 0
010 γ−1 0
100 γ−1 0
101 γ1 1
110 γ1 1
011 γ1 1
111 γ3 1

Algorithm 1.9. Majority-vote
decoding algorithm for R3. Also
shown are the likelihood ratios
(1.23), assuming the channel is a
binary symmetric channel;
γ ≡ (1 − f)/f .

At the risk of explaining the obvious, let’s prove this result. The optimal
decoding decision (optimal in the sense of having the smallest probability of
being wrong) is to find which value of s is most probable, given r. Consider
the decoding of a single bit s, which was encoded as t(s) and gave rise to three
received bits r = r1r2r3. By Bayes’ theorem, the posterior probability of s is

P (s | r1r2r3) =
P (r1r2r3 | s)P (s)

P (r1r2r3)
. (1.18)

We can spell out the posterior probability of the two alternatives thus:

P (s = 1 | r1r2r3) =
P (r1r2r3 | s = 1)P (s = 1)

P (r1r2r3)
; (1.19)

P (s = 0 | r1r2r3) =
P (r1r2r3 | s = 0)P (s = 0)

P (r1r2r3)
. (1.20)

This posterior probability is determined by two factors: the prior probability
P (s), and the data-dependent term P (r1r2r3 | s), which is called the likelihood
of s. The normalizing constant P (r1r2r3) needn’t be computed when finding the
optimal decoding decision, which is to guess ŝ = 0 if P (s = 0 | r) > P (s = 1 | r),
and ŝ= 1 otherwise.

To find P (s = 0 | r) and P (s = 1 | r), we must make an assumption about the
prior probabilities of the two hypotheses s = 0 and s = 1, and we must make an
assumption about the probability of r given s. We assume that the prior prob-
abilities are equal: P (s = 0) = P (s = 1) = 0.5; then maximizing the posterior
probability P (s | r) is equivalent to maximizing the likelihood P (r | s). And we
assume that the channel is a binary symmetric channel with noise level f < 0.5,
so that the likelihood is

P (r | s) = P (r | t(s)) =
N∏

n=1

P (rn | tn(s)), (1.21)

where N = 3 is the number of transmitted bits in the block we are considering,
and

P (rn | tn) =
{

(1−f) if rn = tn
f if rn #= tn.

(1.22)

Thus the likelihood ratio for the two hypotheses is

P (r | s = 1)
P (r | s = 0)

=
N∏

n=1

P (rn | tn(1))
P (rn | tn(0))

; (1.23)

each factor P (rn|tn(1))
P (rn|tn(0)) equals (1−f)

f if rn = 1 and f
(1−f) if rn = 0. The ratio

γ ≡ (1−f)
f is greater than 1, since f < 0.5, so the winning hypothesis is the

one with the most ‘votes’, each vote counting for a factor of γ in the likelihood
ratio.
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for achieving reliable
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Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.
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Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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decoding algorithm for R3. Also
shown are the likelihood ratios
(1.23), assuming the channel is a
binary symmetric channel;
γ ≡ (1 − f)/f .

At the risk of explaining the obvious, let’s prove this result. The optimal
decoding decision (optimal in the sense of having the smallest probability of
being wrong) is to find which value of s is most probable, given r. Consider
the decoding of a single bit s, which was encoded as t(s) and gave rise to three
received bits r = r1r2r3. By Bayes’ theorem, the posterior probability of s is

P (s | r1r2r3) =
P (r1r2r3 | s)P (s)

P (r1r2r3)
. (1.18)

We can spell out the posterior probability of the two alternatives thus:
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P (s = 0 | r1r2r3) =
P (r1r2r3 | s = 0)P (s = 0)

P (r1r2r3)
. (1.20)

This posterior probability is determined by two factors: the prior probability
P (s), and the data-dependent term P (r1r2r3 | s), which is called the likelihood
of s. The normalizing constant P (r1r2r3) needn’t be computed when finding the
optimal decoding decision, which is to guess ŝ = 0 if P (s = 0 | r) > P (s = 1 | r),
and ŝ= 1 otherwise.

To find P (s = 0 | r) and P (s = 1 | r), we must make an assumption about the
prior probabilities of the two hypotheses s = 0 and s = 1, and we must make an
assumption about the probability of r given s. We assume that the prior prob-
abilities are equal: P (s = 0) = P (s = 1) = 0.5; then maximizing the posterior
probability P (s | r) is equivalent to maximizing the likelihood P (r | s). And we
assume that the channel is a binary symmetric channel with noise level f < 0.5,
so that the likelihood is

P (r | s) = P (r | t(s)) =
N∏

n=1

P (rn | tn(s)), (1.21)

where N = 3 is the number of transmitted bits in the block we are considering,
and

P (rn | tn) =
{

(1−f) if rn = tn
f if rn #= tn.

(1.22)

Thus the likelihood ratio for the two hypotheses is

P (r | s = 1)
P (r | s = 0)

=
N∏

n=1

P (rn | tn(1))
P (rn | tn(0))

; (1.23)

each factor P (rn|tn(1))
P (rn|tn(0)) equals (1−f)

f if rn = 1 and f
(1−f) if rn = 0. The ratio

γ ≡ (1−f)
f is greater than 1, since f < 0.5, so the winning hypothesis is the

one with the most ‘votes’, each vote counting for a factor of γ in the likelihood
ratio.
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decoding algorithm for R3. Also
shown are the likelihood ratios
(1.23), assuming the channel is a
binary symmetric channel;
γ ≡ (1 − f)/f .

At the risk of explaining the obvious, let’s prove this result. The optimal
decoding decision (optimal in the sense of having the smallest probability of
being wrong) is to find which value of s is most probable, given r. Consider
the decoding of a single bit s, which was encoded as t(s) and gave rise to three
received bits r = r1r2r3. By Bayes’ theorem, the posterior probability of s is
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This posterior probability is determined by two factors: the prior probability
P (s), and the data-dependent term P (r1r2r3 | s), which is called the likelihood
of s. The normalizing constant P (r1r2r3) needn’t be computed when finding the
optimal decoding decision, which is to guess ŝ = 0 if P (s = 0 | r) > P (s = 1 | r),
and ŝ= 1 otherwise.

To find P (s = 0 | r) and P (s = 1 | r), we must make an assumption about the
prior probabilities of the two hypotheses s = 0 and s = 1, and we must make an
assumption about the probability of r given s. We assume that the prior prob-
abilities are equal: P (s = 0) = P (s = 1) = 0.5; then maximizing the posterior
probability P (s | r) is equivalent to maximizing the likelihood P (r | s). And we
assume that the channel is a binary symmetric channel with noise level f < 0.5,
so that the likelihood is

P (r | s) = P (r | t(s)) =
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one with the most ‘votes’, each vote counting for a factor of γ in the likelihood
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1
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0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1
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0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).

r = (r1r2r3)
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Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.
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n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).

r = (r1r2r3)

P(s | r1r2r3) =
P(r1r2r3 | s)P(s)

P(r1r2r3)

Posteriori probability of s
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! Assumptions:

! We assume that the prior probability are equal: P(s = 0) = P(s = 1) = 0.5

! We assume that the channel is a Binary Symmetric Channel with noise level f < 0.5

! So maximizing P(s | r1r2r3) just requires to maximize the the likelihood P(r | s)
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6 1 — Introduction to Information Theory

Received sequence r Likelihood ratio P (r | s = 1)
P (r | s = 0) Decoded sequence ŝ

000 γ−3 0
001 γ−1 0
010 γ−1 0
100 γ−1 0
101 γ1 1
110 γ1 1
011 γ1 1
111 γ3 1

Algorithm 1.9. Majority-vote
decoding algorithm for R3. Also
shown are the likelihood ratios
(1.23), assuming the channel is a
binary symmetric channel;
γ ≡ (1 − f)/f .

At the risk of explaining the obvious, let’s prove this result. The optimal
decoding decision (optimal in the sense of having the smallest probability of
being wrong) is to find which value of s is most probable, given r. Consider
the decoding of a single bit s, which was encoded as t(s) and gave rise to three
received bits r = r1r2r3. By Bayes’ theorem, the posterior probability of s is

P (s | r1r2r3) =
P (r1r2r3 | s)P (s)

P (r1r2r3)
. (1.18)

We can spell out the posterior probability of the two alternatives thus:

P (s = 1 | r1r2r3) =
P (r1r2r3 | s = 1)P (s = 1)

P (r1r2r3)
; (1.19)

P (s = 0 | r1r2r3) =
P (r1r2r3 | s = 0)P (s = 0)

P (r1r2r3)
. (1.20)

This posterior probability is determined by two factors: the prior probability
P (s), and the data-dependent term P (r1r2r3 | s), which is called the likelihood
of s. The normalizing constant P (r1r2r3) needn’t be computed when finding the
optimal decoding decision, which is to guess ŝ = 0 if P (s = 0 | r) > P (s = 1 | r),
and ŝ= 1 otherwise.

To find P (s = 0 | r) and P (s = 1 | r), we must make an assumption about the
prior probabilities of the two hypotheses s = 0 and s = 1, and we must make an
assumption about the probability of r given s. We assume that the prior prob-
abilities are equal: P (s = 0) = P (s = 1) = 0.5; then maximizing the posterior
probability P (s | r) is equivalent to maximizing the likelihood P (r | s). And we
assume that the channel is a binary symmetric channel with noise level f < 0.5,
so that the likelihood is

P (r | s) = P (r | t(s)) =
N∏

n=1

P (rn | tn(s)), (1.21)

where N = 3 is the number of transmitted bits in the block we are considering,
and

P (rn | tn) =
{

(1−f) if rn = tn
f if rn #= tn.

(1.22)

Thus the likelihood ratio for the two hypotheses is

P (r | s = 1)
P (r | s = 0)

=
N∏

n=1

P (rn | tn(1))
P (rn | tn(0))

; (1.23)

each factor P (rn|tn(1))
P (rn|tn(0)) equals (1−f)

f if rn = 1 and f
(1−f) if rn = 0. The ratio

γ ≡ (1−f)
f is greater than 1, since f < 0.5, so the winning hypothesis is the

one with the most ‘votes’, each vote counting for a factor of γ in the likelihood
ratio.
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! The optimal algorithm looks at the received bits three at a time and takes a majority 

vote. 

! no errors: the message is correctly decoded 

! one error: the original is recovered  

! two or three errors: the message is incorrectly decoded. 

Decoding a message 
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1.2: Error-correcting codes for the binary symmetric channel 5

Noisy
channel

Encoder Decoder

Source

t

s

r

ŝ

!

"

"

#

Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 7

Thus the majority-vote decoder shown in algorithm 1.9 is the optimal decoder
if we assume that the channel is a binary symmetric channel and that the two
possible source messages 0 and 1 have equal prior probability.

We now apply the majority vote decoder to the received vector of figure 1.8.
The first three received bits are all 0, so we decode this triplet as a 0. In the
second triplet of figure 1.8, there are two 0s and one 1, so we decode this triplet
as a 0 – which in this case corrects the error. Not all errors are corrected,
however. If we are unlucky and two errors fall in a single block, as in the fifth
triplet of figure 1.8, then the decoding rule gets the wrong answer, as shown
in figure 1.10.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0︸︷︷︸ 0 0 1︸︷︷︸ 1 1 1︸︷︷︸ 0 0 0︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 0 0︸︷︷︸
ŝ 0 0 1 0 0 1 0

corrected errors !
undetected errors !

Figure 1.10. Decoding the received
vector from figure 1.8.

Exercise 1.2.[2, p.16] Show that the error probability is reduced by the use of The exercise’s rating, e.g.‘[2 ]’,
indicates its difficulty: ‘1’
exercises are the easiest. Exercises
that are accompanied by a
marginal rat are especially
recommended. If a solution or
partial solution is provided, the
page is indicated after the
difficulty rating; for example, this
exercise’s solution is on page 16.

R3 by computing the error probability of this code for a binary symmetric
channel with noise level f .

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f 2. In the case of the binary
symmetric channel with f = 0.1, the R3 code has a probability of error, after
decoding, of pb ! 0.03 per bit. Figure 1.11 shows the result of transmitting a
binary image over a binary symmetric channel using the repetition code.

s

!

encoder t channel

f = 10%

!

r decoder

!

ŝ

Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 1/3.
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! The error probability of R3 is a sum of two terms: 

! the probability that all three bits are flipped = f 3;  

! the probability that exactly two bits are flipped, 3f 2(1 − f). 

Probability of error of R3 coding? 

45

Pb = 3 f
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f = 0.1 
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! Assuming  a BSC with f = 0.1

The improvement on Pb with R3 
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1.2: Error-correcting codes for the binary symmetric channel 7

Thus the majority-vote decoder shown in algorithm 1.9 is the optimal decoder
if we assume that the channel is a binary symmetric channel and that the two
possible source messages 0 and 1 have equal prior probability.

We now apply the majority vote decoder to the received vector of figure 1.8.
The first three received bits are all 0, so we decode this triplet as a 0. In the
second triplet of figure 1.8, there are two 0s and one 1, so we decode this triplet
as a 0 – which in this case corrects the error. Not all errors are corrected,
however. If we are unlucky and two errors fall in a single block, as in the fifth
triplet of figure 1.8, then the decoding rule gets the wrong answer, as shown
in figure 1.10.
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ŝ 0 0 1 0 0 1 0

corrected errors !
undetected errors !
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vector from figure 1.8.
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that are accompanied by a
marginal rat are especially
recommended. If a solution or
partial solution is provided, the
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R3 by computing the error probability of this code for a binary symmetric
channel with noise level f .

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f 2. In the case of the binary
symmetric channel with f = 0.1, the R3 code has a probability of error, after
decoding, of pb ! 0.03 per bit. Figure 1.11 shows the result of transmitting a
binary image over a binary symmetric channel using the repetition code.
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Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 1/3.
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Thus the majority-vote decoder shown in algorithm 1.9 is the optimal decoder
if we assume that the channel is a binary symmetric channel and that the two
possible source messages 0 and 1 have equal prior probability.
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channel with noise level f .

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f 2. In the case of the binary
symmetric channel with f = 0.1, the R3 code has a probability of error, after
decoding, of pb ! 0.03 per bit. Figure 1.11 shows the result of transmitting a
binary image over a binary symmetric channel using the repetition code.
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Figure 1.12. Error probability pb

versus rate for repetition codes
over a binary symmetric channel
with f = 0.1. The right-hand
figure shows pb on a logarithmic
scale. We would like the rate to
be large and pb to be small.

The repetition code R3 has therefore reduced the probability of error, as
desired. Yet we have lost something: our rate of information transfer has
fallen by a factor of three. So if we use a repetition code to communicate data
over a telephone line, it will reduce the error frequency, but it will also reduce
our communication rate. We will have to pay three times as much for each
phone call. Similarly, we would need three of the original noisy gigabyte disk
drives in order to create a one-gigabyte disk drive with pb = 0.03.

Can we push the error probability lower, to the values required for a sell-
able disk drive – 10−15? We could achieve lower error probabilities by using
repetition codes with more repetitions.

Exercise 1.3.[3, p.16] (a) Show that the probability of error of RN , the repe-
tition code with N repetitions, is

pb =
N∑

n=(N+1)/2

(
N

n

)
fn(1 − f)N−n, (1.24)

for odd N .

(b) Assuming f = 0.1, which of the terms in this sum is the biggest?
How much bigger is it than the second-biggest term?

(c) Use Stirling’s approximation (p.2) to approximate the
(N

n

)
in the

largest term, and find, approximately, the probability of error of
the repetition code with N repetitions.

(d) Assuming f = 0.1, find how many repetitions are required to get
the probability of error down to 10−15. [Answer: about 60.]

So to build a single gigabyte disk drive with the required reliability from noisy
gigabyte drives with f = 0.1, we would need sixty of the noisy disk drives.
The tradeoff between error probability and rate for repetition codes is shown
in figure 1.12.

Block codes – the (7, 4) Hamming code

We would like to communicate with tiny probability of error and at a substan-
tial rate. Can we improve on repetition codes? What if we add redundancy to
blocks of data instead of encoding one bit at a time? We now study a simple
block code.

Log scale
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! Can we push the error probability lower, to the values required for a sellable disk 

drive (e.g. 10−15) ? 

! So to build a single gigabyte disk drive with the required reliability from noisy 

gigabyte drives with f = 0.1, we would need 60 of the noisy disk drives 

What improvements could we expect? At What rate? 
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The repetition code R3 has therefore reduced the probability of error, as
desired. Yet we have lost something: our rate of information transfer has
fallen by a factor of three. So if we use a repetition code to communicate data
over a telephone line, it will reduce the error frequency, but it will also reduce
our communication rate. We will have to pay three times as much for each
phone call. Similarly, we would need three of the original noisy gigabyte disk
drives in order to create a one-gigabyte disk drive with pb = 0.03.

Can we push the error probability lower, to the values required for a sell-
able disk drive – 10−15? We could achieve lower error probabilities by using
repetition codes with more repetitions.

Exercise 1.3.[3, p.16] (a) Show that the probability of error of RN , the repe-
tition code with N repetitions, is

pb =
N∑

n=(N+1)/2

(
N

n

)
fn(1 − f)N−n, (1.24)

for odd N .

(b) Assuming f = 0.1, which of the terms in this sum is the biggest?
How much bigger is it than the second-biggest term?

(c) Use Stirling’s approximation (p.2) to approximate the
(N

n

)
in the

largest term, and find, approximately, the probability of error of
the repetition code with N repetitions.

(d) Assuming f = 0.1, find how many repetitions are required to get
the probability of error down to 10−15. [Answer: about 60.]

So to build a single gigabyte disk drive with the required reliability from noisy
gigabyte drives with f = 0.1, we would need sixty of the noisy disk drives.
The tradeoff between error probability and rate for repetition codes is shown
in figure 1.12.

Block codes – the (7, 4) Hamming code

We would like to communicate with tiny probability of error and at a substan-
tial rate. Can we improve on repetition codes? What if we add redundancy to
blocks of data instead of encoding one bit at a time? We now study a simple
block code.

Log scale



Course Overview - 

Information Theory

Block codes – the (7, 4) Hamming code

49



Course Overview - 

! Add redundancy to blocks of data instead of encoding one bit at a time 

Block Codes 

50



Course Overview - 

! Add redundancy to blocks of data instead of encoding one bit at a time 

! A block code is a rule for converting a sequence of source bits s, of length K, say, 

into a transmitted sequence t of length N bits.  

! To add redundancy, N > K  

Block Codes 

50

s

K bits
t

N bits
Encoder



Course Overview - 

! Add redundancy to blocks of data instead of encoding one bit at a time 

! A block code is a rule for converting a sequence of source bits s, of length K, say, 

into a transmitted sequence t of length N bits.  

! To add redundancy, N > K  

! In a linear block code, the extra N − K bits are linear functions of the original K bits 

Block Codes 

50

s

K bits
t

N bits
Encoder

s

K bits
t

N bits
Encoder

s parity-check



Course Overview - 

! Linear block code with N = 7; K = 4 

! 4 source bits 

! 3 parity check bits

Hamming Code (7, 4) 

51

t

7 bits

s1 s2 s3 s4 t5 t5 t5



Course Overview - 

! Linear block code with N = 7; K = 4 

! 4 source bits 

! 3 parity check bits

! The 3 parity check bits are linear combinations of  the message bits

Hamming Code (7, 4) 

51

t

7 bits

s1 s2 s3 s4 t5 t5 t5



Course Overview - 

! Linear block code with N = 7; K = 4 

! 4 source bits 

! 3 parity check bits

! The 3 parity check bits are linear combinations of  the message bits

Hamming Code (7, 4) 

51

t

7 bits

s1 s2 s3 s4 t5 t5 t5

t5 = s1⊕ s2 ⊕ s3
t6 = s2 ⊕ s3⊕ s4
t7 = s1⊕ s3⊕ s4



Course Overview - 

! Linear block code with N = 7; K = 4 

! 4 source bits 

! 3 parity check bits

! The 3 parity check bits are linear combinations of  the message bits

Hamming Code (7, 4) 

51

t

7 bits

s1 s2 s3 s4 t5 t5 t5

t5 = s1⊕ s2 ⊕ s3
t6 = s2 ⊕ s3⊕ s4
t7 = s1⊕ s3⊕ s4

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 9

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.
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Figure 1.13. Pictorial
representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)
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The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.
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0000 0000000
0001 0001011
0010 0010111
0011 0011100
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0100 0100110
0101 0101101
0110 0110001
0111 0111010
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1000 1000101
1001 1001110
1010 1010010
1011 1011001
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1100 1100011
1101 1101000
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1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5 = 1⊕ 0⊕ 0
t6 = 0⊕ 0⊕ 0
t7 = 1⊕ 0⊕ 0
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K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
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The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.
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0110 0110001
0111 0111010
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1000 1000101
1001 1001110
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1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)
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t = GT s
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The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.
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0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010
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1000 1000101
1001 1001110
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1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5
t6
t7

s1 s2 s3 s4

t1 t2 t3 t4 t5 t6 t7
s1
s2
s3
s4

GT = G =
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where

G =





1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1



 . (1.28)

I find it easier to relate to the right-multiplication (1.25) than the left-multiplica-
tion (1.27). Many coding theory texts use the left-multiplying conventions
(1.27–1.28), however.

The rows of the generator matrix (1.28) can be viewed as defining four basis
vectors lying in a seven-dimensional binary space. The sixteen codewords are
obtained by making all possible linear combinations of these vectors.

Decoding the (7, 4) Hamming code

When we invent a more complex encoder s → t, the task of decoding the
received vector r becomes less straightforward. Remember that any of the
bits may have been flipped, including the parity bits.

If we assume that the channel is a binary symmetric channel and that all
source vectors are equiprobable, then the optimal decoder identifies the source
vector s whose encoding t(s) differs from the received vector r in the fewest
bits. [Refer to the likelihood function (1.23) to see why this is so.] We could
solve the decoding problem by measuring how far r is from each of the sixteen
codewords in table 1.14, then picking the closest. Is there a more efficient way
of finding the most probable source vector?

Syndrome decoding for the Hamming code

For the (7, 4) Hamming code there is a pictorial solution to the decoding
problem, based on the encoding picture, figure 1.13.

As a first example, let’s assume the transmission was t = 1000101 and the
noise flips the second bit, so the received vector is r = 1000101⊕ 0100000 =
1100101. We write the received vector into the three circles as shown in
figure 1.15a, and look at each of the three circles to see whether its parity
is even. The circles whose parity is not even are shown by dashed lines in
figure 1.15b. The decoding task is to find the smallest set of flipped bits that
can account for these violations of the parity rules. [The pattern of violations
of the parity checks is called the syndrome, and can be written as a binary
vector – for example, in figure 1.15b, the syndrome is z = (1, 1, 0), because
the first two circles are ‘unhappy’ (parity 1) and the third circle is ‘happy’
(parity 0).]

To solve the decoding task, we ask the question: can we find a unique bit
that lies inside all the ‘unhappy’ circles and outside all the ‘happy’ circles? If
so, the flipping of that bit would account for the observed syndrome. In the
case shown in figure 1.15b, the bit r2 lies inside the two unhappy circles and
outside the happy circle; no other single bit has this property, so r2 is the only
single bit capable of explaining the syndrome.

Let’s work through a couple more examples. Figure 1.15c shows what
happens if one of the parity bits, t5, is flipped by the noise. Just one of the
checks is violated. Only r5 lies inside this unhappy circle and outside the other
two happy circles, so r5 is identified as the only single bit capable of explaining
the syndrome.

If the central bit r3 is received flipped, figure 1.15d shows that all three
checks are violated; only r3 lies inside all three circles, so r3 is identified as
the suspect bit.
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! We assume a Binary Symmetric Channel and that all source vectors are 

equiprobable. 

! The optimal decoder identifies the source vector s whose encoding t(s) differs 

from the received vector r in the fewest bits. This corresponds to find the closest 

codeword of r.

! Since any pair of codewords differ from each other in at least three bits, the H(7, 4) 

will detect and correct any error on a single bit. It will be misleading with errors 

on two bits.

! Each error on one bit is associated to a syndrome.
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?

The circles associated to 
t5 and t6
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?

Which bits are involved 
in all circles with a 
violation?

The circles associated to 
t5 and t6
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?

Which bits are involved 
in all circles with a 
violation?

The circles associated to 
t5 and t6

only r2 ! (the flipped bit)
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?

Which bits are involved 
in all circles with a 
violation?

The circles associated to 
t5 and t6

only r2 ! (the flipped bit)

The syndrome to this 
error is based on the 
parity of the circles



Course Overview - 

Decoding the Hamming Code (7, 4) 

56

s = 1000

t = 1000101

n = 0100000

r = 1100101

t5 = s1⊕ s2 ⊕ s3
t6 = s2 ⊕ s3⊕ s4
t7 = s1⊕ s3⊕ s4

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 11

(a)

r
rr

r r

r

7 6

5

4r

3
21

(b)

1*1

1

01

0

0
(c)

*0

1

01

0

0

0

(d)

1 0

0

1

01

1*

(e)

1*

0*

1

1

00

0 !

(e′)

1*

0*

1

1

00

1

Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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violation?
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?

Which bits are involved 
in all circles with a 
violation?

The circles associated to 
t5
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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in all circles with a 
violation?

The circles associated to 
t5
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is



Course Overview - 

Decoding the Hamming Code (7, 4) 

58

s = 1000

t = 1000101

n = 0000100

r = 1000001

t5 = s1⊕ s2 ⊕ s3
t6 = s2 ⊕ s3⊕ s4
t7 = s1⊕ s3⊕ s4

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 11

(a)

r
rr

r r

r

7 6

5

4r

3
21

(b)

1*1

1

01

0

0
(c)

*0

1

01

0

0

0

(d)

1 0

0

1

01

1*

(e)

1*

0*

1

1

00

0 !

(e′)

1*

0*

1

1

00

1

Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is



Course Overview - 

Decoding the Hamming Code (7, 4) 

59

s = 1000

t = 1000101

n = 0010000

r = 1010101

t5 = s1⊕ s2 ⊕ s3
t6 = s2 ⊕ s3⊕ s4
t7 = s1⊕ s3⊕ s4

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 11

(a)

r
rr

r r

r

7 6

5

4r

3
21

(b)

1*1

1

01

0

0
(c)

*0

1

01

0

0

0

(d)

1 0

0

1

01

1*

(e)

1*

0*

1

1

00

0 !

(e′)

1*

0*

1

1

00

1

Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?

The circles associated to 
t5, t6, t7. 
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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violation?
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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in all circles with a 
violation?

The circles associated to 
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is

Which circles violate the 
parity check?

Which bits are involved 
in all circles with a 
violation?

The circles associated to 
t5, t6, t7. 

only r3 ! (the flipped bit)

The syndrome to this 
error is based on the 
parity of the circles

z = (111)
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ! were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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1.2: Error-correcting codes for the binary symmetric channel 9

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.
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Figure 1.13. Pictorial
representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5
t6
t7

s1 s2 s3 s4

t1 t2 t3 t4 t5 t6 t7
s1
s2
s3
s4

GT = G =
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where

G =





1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1



 . (1.28)

I find it easier to relate to the right-multiplication (1.25) than the left-multiplica-
tion (1.27). Many coding theory texts use the left-multiplying conventions
(1.27–1.28), however.

The rows of the generator matrix (1.28) can be viewed as defining four basis
vectors lying in a seven-dimensional binary space. The sixteen codewords are
obtained by making all possible linear combinations of these vectors.

Decoding the (7, 4) Hamming code

When we invent a more complex encoder s → t, the task of decoding the
received vector r becomes less straightforward. Remember that any of the
bits may have been flipped, including the parity bits.

If we assume that the channel is a binary symmetric channel and that all
source vectors are equiprobable, then the optimal decoder identifies the source
vector s whose encoding t(s) differs from the received vector r in the fewest
bits. [Refer to the likelihood function (1.23) to see why this is so.] We could
solve the decoding problem by measuring how far r is from each of the sixteen
codewords in table 1.14, then picking the closest. Is there a more efficient way
of finding the most probable source vector?

Syndrome decoding for the Hamming code

For the (7, 4) Hamming code there is a pictorial solution to the decoding
problem, based on the encoding picture, figure 1.13.

As a first example, let’s assume the transmission was t = 1000101 and the
noise flips the second bit, so the received vector is r = 1000101⊕ 0100000 =
1100101. We write the received vector into the three circles as shown in
figure 1.15a, and look at each of the three circles to see whether its parity
is even. The circles whose parity is not even are shown by dashed lines in
figure 1.15b. The decoding task is to find the smallest set of flipped bits that
can account for these violations of the parity rules. [The pattern of violations
of the parity checks is called the syndrome, and can be written as a binary
vector – for example, in figure 1.15b, the syndrome is z = (1, 1, 0), because
the first two circles are ‘unhappy’ (parity 1) and the third circle is ‘happy’
(parity 0).]

To solve the decoding task, we ask the question: can we find a unique bit
that lies inside all the ‘unhappy’ circles and outside all the ‘happy’ circles? If
so, the flipping of that bit would account for the observed syndrome. In the
case shown in figure 1.15b, the bit r2 lies inside the two unhappy circles and
outside the happy circle; no other single bit has this property, so r2 is the only
single bit capable of explaining the syndrome.

Let’s work through a couple more examples. Figure 1.15c shows what
happens if one of the parity bits, t5, is flipped by the noise. Just one of the
checks is violated. Only r5 lies inside this unhappy circle and outside the other
two happy circles, so r5 is identified as the only single bit capable of explaining
the syndrome.

If the central bit r3 is received flipped, figure 1.15d shows that all three
checks are violated; only r3 lies inside all three circles, so r3 is identified as
the suspect bit.
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A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.
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Figure 1.13. Pictorial
representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5
t6
t7

s1 s2 s3 s4

GT =
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A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.
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representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5
t6
t7

s1 s2 s3 s4

GT =
I4

P
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A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.
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The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5
t6
t7

s1 s2 s3 s4

GT =
I4

P

H = P I3⎡
⎣

⎤
⎦ =
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Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7, 4) Hamming code. The
probability of decoded bit error is
about 7%.

given by reading out its first four bits. If the syndrome is non-zero, then the
noise sequence for this block was non-zero, and the syndrome is our pointer to
the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the
3× 4 matrix P such that the matrix of equation (1.26) is

GT =
[

I4

P

]
, (1.29)

where I4 is the 4 × 4 identity matrix, then the syndrome vector is z = Hr,
where the parity-check matrix H is given by H =

[
−P I3

]
; in modulo 2

arithmetic, −1 ≡ 1, so

H =
[

P I3

]
=




1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1



 . (1.30)

All the codewords t = GTs of the code satisfy

Ht =




0
0
0



 . (1.31)

! Exercise 1.4.[1 ] Prove that this is so by evaluating the 3× 4 matrix HGT.

Since the received vector r is given by r = GTs + n, the syndrome-decoding
problem is to find the most probable noise vector n satisfying the equation

Hn = z. (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood
decoder. We will discuss decoding problems like this in later chapters.

Summary of the (7, 4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 × 2 × 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes – one for each of the one-bit error patterns –
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.

I3P
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1.2: Error-correcting codes for the binary symmetric channel 9

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.
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Figure 1.13. Pictorial
representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5
t6
t7

s1 s2 s3 s4

GT =
I4

P

H = P I3⎡
⎣

⎤
⎦ =
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Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7, 4) Hamming code. The
probability of decoded bit error is
about 7%.

given by reading out its first four bits. If the syndrome is non-zero, then the
noise sequence for this block was non-zero, and the syndrome is our pointer to
the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the
3× 4 matrix P such that the matrix of equation (1.26) is

GT =
[

I4

P

]
, (1.29)

where I4 is the 4 × 4 identity matrix, then the syndrome vector is z = Hr,
where the parity-check matrix H is given by H =

[
−P I3

]
; in modulo 2

arithmetic, −1 ≡ 1, so

H =
[

P I3

]
=




1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1



 . (1.30)

All the codewords t = GTs of the code satisfy

Ht =




0
0
0



 . (1.31)

! Exercise 1.4.[1 ] Prove that this is so by evaluating the 3× 4 matrix HGT.

Since the received vector r is given by r = GTs + n, the syndrome-decoding
problem is to find the most probable noise vector n satisfying the equation

Hn = z. (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood
decoder. We will discuss decoding problems like this in later chapters.

Summary of the (7, 4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 × 2 × 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes – one for each of the one-bit error patterns –
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.

I3P

z = Hr

The syndrome z is calculated with the 
received sequence and H
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1.2: Error-correcting codes for the binary symmetric channel 9

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.
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Figure 1.13. Pictorial
representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5
t6
t7

s1 s2 s3 s4

GT =
I4

P

H = P I3⎡
⎣

⎤
⎦ =
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Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7, 4) Hamming code. The
probability of decoded bit error is
about 7%.

given by reading out its first four bits. If the syndrome is non-zero, then the
noise sequence for this block was non-zero, and the syndrome is our pointer to
the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the
3× 4 matrix P such that the matrix of equation (1.26) is

GT =
[

I4

P

]
, (1.29)

where I4 is the 4 × 4 identity matrix, then the syndrome vector is z = Hr,
where the parity-check matrix H is given by H =

[
−P I3

]
; in modulo 2

arithmetic, −1 ≡ 1, so

H =
[

P I3

]
=




1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1



 . (1.30)

All the codewords t = GTs of the code satisfy

Ht =




0
0
0



 . (1.31)

! Exercise 1.4.[1 ] Prove that this is so by evaluating the 3× 4 matrix HGT.

Since the received vector r is given by r = GTs + n, the syndrome-decoding
problem is to find the most probable noise vector n satisfying the equation

Hn = z. (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood
decoder. We will discuss decoding problems like this in later chapters.

Summary of the (7, 4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 × 2 × 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes – one for each of the one-bit error patterns –
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.

I3P

z = Hr

The syndrome z is calculated with the 
received sequence and H

All the codewords t of the code satisfy

0

0

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= Ht
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1.2: Error-correcting codes for the binary symmetric channel 9

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.
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representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)

t5
t6
t7

s1 s2 s3 s4

GT =

H = P I3⎡
⎣

⎤
⎦ =
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Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7, 4) Hamming code. The
probability of decoded bit error is
about 7%.

given by reading out its first four bits. If the syndrome is non-zero, then the
noise sequence for this block was non-zero, and the syndrome is our pointer to
the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the
3× 4 matrix P such that the matrix of equation (1.26) is

GT =
[

I4

P

]
, (1.29)

where I4 is the 4 × 4 identity matrix, then the syndrome vector is z = Hr,
where the parity-check matrix H is given by H =

[
−P I3

]
; in modulo 2

arithmetic, −1 ≡ 1, so

H =
[

P I3

]
=




1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1



 . (1.30)

All the codewords t = GTs of the code satisfy

Ht =




0
0
0



 . (1.31)

! Exercise 1.4.[1 ] Prove that this is so by evaluating the 3× 4 matrix HGT.

Since the received vector r is given by r = GTs + n, the syndrome-decoding
problem is to find the most probable noise vector n satisfying the equation

Hn = z. (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood
decoder. We will discuss decoding problems like this in later chapters.

Summary of the (7, 4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 × 2 × 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes – one for each of the one-bit error patterns –
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.

z = Hr

The syndrome z is calculated with the 
received sequence and H

All the codewords t of the code satisfy

0

0

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= Ht
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! A decoding error will occur whenever the noise has flipped more than one bit in a 

block of seven. 

! The probability of block error is thus the probability that two or more bits are 

flipped in a block

! The probability of bit error (for the source bits) is simply three sevenths of the 

probability of block error.

! The Hamming code communicates at a rate, R = 4/7.

PB = r
7( ) f r (1− f )7−r

r=2

7

∑

Pb =
3
7
PB
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Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7, 4) Hamming code. The
probability of decoded bit error is
about 7%.

given by reading out its first four bits. If the syndrome is non-zero, then the
noise sequence for this block was non-zero, and the syndrome is our pointer to
the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the
3× 4 matrix P such that the matrix of equation (1.26) is

GT =
[

I4

P

]
, (1.29)

where I4 is the 4 × 4 identity matrix, then the syndrome vector is z = Hr,
where the parity-check matrix H is given by H =

[
−P I3

]
; in modulo 2

arithmetic, −1 ≡ 1, so

H =
[

P I3

]
=




1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1



 . (1.30)

All the codewords t = GTs of the code satisfy

Ht =




0
0
0



 . (1.31)

! Exercise 1.4.[1 ] Prove that this is so by evaluating the 3× 4 matrix HGT.

Since the received vector r is given by r = GTs + n, the syndrome-decoding
problem is to find the most probable noise vector n satisfying the equation

Hn = z. (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood
decoder. We will discuss decoding problems like this in later chapters.

Summary of the (7, 4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 × 2 × 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes – one for each of the one-bit error patterns –
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.

(*) Transmitting 10 000 source bits over a binary symmetric channel with f = 10% using a (7, 4) 
Hamming code. The probability of decoded bit error is about 7%. 
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Figure 1.18. Error probability pb

versus rate R for repetition codes,
the (7, 4) Hamming code and
BCH codes with blocklengths up
to 1023 over a binary symmetric
channel with f = 0.1. The
righthand figure shows pb on a
logarithmic scale.

Exercise 1.9.[4, p.19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s
the point of this exercise.]

Exercise 1.10.[3, p.20] A (7, 4) Hamming code can correct any one error; might
there be a (14, 8) code that can correct any two errors?
Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

Exercise 1.11.[4, p.21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size N .

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability pb

(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, pb)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, pb) plane was a curve passing
through the origin (R, pb) = (0, 0); if this were so, then, in order to achieve
a vanishingly small error probability pb, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- ∗
tween achievable and nonachievable points meets the R axis at a non-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error pb

at non-zero rates. The first half of this book (Parts I–III) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding
theorem.

Example: f = 0.1

The maximum rate at which communication is possible with arbitrarily small
pb is called the capacity of the channel. The formula for the capacity of a

Over a binary symmetric channel with f = 0.1 
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Exercise 1.9.[4, p.19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s
the point of this exercise.]

Exercise 1.10.[3, p.20] A (7, 4) Hamming code can correct any one error; might
there be a (14, 8) code that can correct any two errors?
Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

Exercise 1.11.[4, p.21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size N .

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability pb

(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, pb)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, pb) plane was a curve passing
through the origin (R, pb) = (0, 0); if this were so, then, in order to achieve
a vanishingly small error probability pb, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- ∗
tween achievable and nonachievable points meets the R axis at a non-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error pb

at non-zero rates. The first half of this book (Parts I–III) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding
theorem.

Example: f = 0.1

The maximum rate at which communication is possible with arbitrarily small
pb is called the capacity of the channel. The formula for the capacity of a
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! Goals: 

" Reduce the decoded bit-error probability Pb 

" We would like to keep the rate R large.  

! What points in the (R, Pb) plane are achievable?
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Exercise 1.9.[4, p.19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s
the point of this exercise.]

Exercise 1.10.[3, p.20] A (7, 4) Hamming code can correct any one error; might
there be a (14, 8) code that can correct any two errors?
Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

Exercise 1.11.[4, p.21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size N .

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability pb

(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, pb)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, pb) plane was a curve passing
through the origin (R, pb) = (0, 0); if this were so, then, in order to achieve
a vanishingly small error probability pb, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- ∗
tween achievable and nonachievable points meets the R axis at a non-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error pb

at non-zero rates. The first half of this book (Parts I–III) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding
theorem.

Example: f = 0.1

The maximum rate at which communication is possible with arbitrarily small
pb is called the capacity of the channel. The formula for the capacity of a
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Exercise 1.9.[4, p.19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s
the point of this exercise.]

Exercise 1.10.[3, p.20] A (7, 4) Hamming code can correct any one error; might
there be a (14, 8) code that can correct any two errors?
Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

Exercise 1.11.[4, p.21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size N .

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability pb

(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, pb)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, pb) plane was a curve passing
through the origin (R, pb) = (0, 0); if this were so, then, in order to achieve
a vanishingly small error probability pb, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- ∗
tween achievable and nonachievable points meets the R axis at a non-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error pb

at non-zero rates. The first half of this book (Parts I–III) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding
theorem.

Example: f = 0.1

The maximum rate at which communication is possible with arbitrarily small
pb is called the capacity of the channel. The formula for the capacity of a
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Exercise 1.9.[4, p.19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s
the point of this exercise.]

Exercise 1.10.[3, p.20] A (7, 4) Hamming code can correct any one error; might
there be a (14, 8) code that can correct any two errors?
Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

Exercise 1.11.[4, p.21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size N .

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability pb

(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, pb)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, pb) plane was a curve passing
through the origin (R, pb) = (0, 0); if this were so, then, in order to achieve
a vanishingly small error probability pb, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- ∗
tween achievable and nonachievable points meets the R axis at a non-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error pb

at non-zero rates. The first half of this book (Parts I–III) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding
theorem.

Example: f = 0.1

The maximum rate at which communication is possible with arbitrarily small
pb is called the capacity of the channel. The formula for the capacity of a
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What performance can the best codes achieve?

! The widespread belief that the boundary between achievable and nonachievable 

points in the (R, Pb) plane was a curve passing through the origin (R, Pb) = (0,0)  

! Shannon proved that the boundary between achievable and nonachievable points 

meets the R axis at a non-zero value R = C
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Figure 1.19. Shannon’s
noisy-channel coding theorem.
The solid curve shows the
Shannon limit on achievable
values of (R, pb) for the binary
symmetric channel with f = 0.1.
Rates up to R = C are achievable
with arbitrarily small pb. The
points show the performance of
some textbook codes, as in
figure 1.18.

The equation defining the
Shannon limit (the solid curve) is
R = C/(1−H2(pb)), where C and
H2 are defined in equation (1.35).

binary symmetric channel with noise level f is

C(f) = 1 − H2(f) = 1 −
[
f log2

1
f

+ (1 − f) log2
1

1 − f

]
; (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
C " 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with pb = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pb = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with pb " 10−15 from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 10−15? You don’t
need sixty disk drives – you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pb = 10−18 or 10−24 or anything, you can get there with two disk
drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte
drive from them’.]

1.4 Summary

The (7, 4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a noisy channel at a non-zero rate with
arbitrarily small error probability.

For BSC 
with f = 0.1
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What performance can the best codes achieve?

! Shannon proved that the boundary between achievable and nonachievable points 

meets the R axis at a non-zero value R = C 

! For any channel, there exist codes that make it possible to communicate with 

arbitrarily small probability of error Pb at non-zero rates. 
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H2 are defined in equation (1.35).

binary symmetric channel with noise level f is

C(f) = 1 − H2(f) = 1 −
[
f log2

1
f

+ (1 − f) log2
1

1 − f

]
; (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
C " 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with pb = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pb = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with pb " 10−15 from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 10−15? You don’t
need sixty disk drives – you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pb = 10−18 or 10−24 or anything, you can get there with two disk
drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte
drive from them’.]

1.4 Summary

The (7, 4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a noisy channel at a non-zero rate with
arbitrarily small error probability.

For BSC 
with f = 0.1
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What performance can the best codes achieve?

! C is the channel capacity 

! and the curve separating the regions
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The equation defining the
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binary symmetric channel with noise level f is

C(f) = 1 − H2(f) = 1 −
[
f log2

1
f

+ (1 − f) log2
1

1 − f

]
; (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
C " 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with pb = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pb = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with pb " 10−15 from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 10−15? You don’t
need sixty disk drives – you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pb = 10−18 or 10−24 or anything, you can get there with two disk
drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte
drive from them’.]

1.4 Summary

The (7, 4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a noisy channel at a non-zero rate with
arbitrarily small error probability.

For BSC 
with f = 0.1
C = 0.53

C( f ) = 1− H2 ( f ) = 1− f log2 1f + (1− f )log2 1
1− f⎡⎣ ⎤⎦

R = C / (1− H2 (pb ))
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What is the impact?

! Consider a (noisy) disk drive with f = 0.1 

" The code R3 could communicate over this channel with Pb = 0.03 at a rate R = 1/3 

" The code R3 could communicate over this channel with Pb ≈ 10-15 at a rate R = 1/60
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What is the impact?

! Consider a (noisy) disk drive with f = 0.1 

" The code R3 could communicate over this channel with Pb = 0.03 at a rate R = 1/3 

" The code R3 could communicate over this channel with Pb ≈ 10-15 at a rate R = 1/60

! According to Shannon you don’t need 60 disks to get a performance of Pb ≈ 10-15. 

You can get that performance with just 2 disks ! (0.5 < 0.53)
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binary symmetric channel with noise level f is

C(f) = 1 − H2(f) = 1 −
[
f log2

1
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+ (1 − f) log2
1

1 − f

]
; (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
C " 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with pb = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pb = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with pb " 10−15 from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 10−15? You don’t
need sixty disk drives – you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pb = 10−18 or 10−24 or anything, you can get there with two disk
drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte
drive from them’.]

1.4 Summary

The (7, 4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a noisy channel at a non-zero rate with
arbitrarily small error probability.
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Course Overview - 

Further Reading
! Recommend Readings 

" Information Theory, Inference, and Learning Algorithms from David MacKay, 2015,  

pages 1 - 16. 

! Supplemental readings: 

" The introduction of “A Mathematical Theory of Communication, Claude Shannon, 1948”, 
pages 1-2. 

" See the movie: “Claude Shannon - Father of the Information Age”

76

https://www.youtube.com/embed/z2Whj_nL-x8
https://www.youtube.com/embed/z2Whj_nL-x8
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What you should know
! Why is important the ideia of Digital communications? 

! What was the main question that Shannon try to address with Information Theory? 

! What is on of the most important result of Shannon’s work? 

! Concepts: 

" General Digital Communication system 

" What is the role of the Encoder (and the corresponding decoder) 

" BSC; what is f 

" What is Pb, PB and R (rate)? 

" Understand the Repetition codes, (RN) 

" Understand the Block codes, the Linear Block codes, the Hamming code H(7, 4)
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